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A computer-aided contour search technique for finding the complex roots of infinite- 
or finite-order complex transcendental equations, called the Method of Eigenualleys, 
is presented. The method is used to solve a dispersion relation, which arises in the theory 
of linear wave propagation in viscous compressible liquids. 

I. 1 NTRODUCTION 

Many problems in wave propagation and allied fields lead to a dispersion 
relation which is transcendental in the relevant complex propagation constant, 
and the difficulty of solving this complex eigenvalue equation has caused their 
solution to remain uncompleted. Typically, such problems reduce to a system 
of homogeneous linear equations (derived from a set of homogeneous boundary 
conditions), which are of the form 

A(k)C = 0, (1) 

where A(k) is a square complex coefficient matrix of order n, with usually all 
coefficients Aij being functions of the complex wavenumber (alternatively called 
the propagation constant, separation constant, or eigenvalue) k = k, +jki 
[j = v’C l)], and C is a complex constant matrix of order n with at least one 
of the elements Ci arbitrary. For a nontrivial solution of (I), the rank of A(k) 
must be less than n, and k is found as all solutions of 

det(A(k)) = 0. (2) 
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Because of the complex transcendental nature of (2) obtaining the solution is 
generally not easy. 

In the past, researchers have tried various techniques, such as expanding the 
transcendental functions in the coefficients of A(k) in truncated series, or using 
directly one of many numerical minimization schemes (e.g., steepest descent, or 
Newton-Raphson iteration). Both procedures have their disadvantages, with the 
former yielding incomplete approximate eigenvalues whose associated parameter 
range is overly restricted by the assumption that the arguments of the truncated 
series must be very small (or very large for truncated asymptotic series), and 
with the latter being limited by both the possibilities of missing important eigen- 
values and the waste of the man hours and computer time required to determine 
analytically, program, and compute gradients. Another technique suggested by 
Delves and Lyness [9] and modified in a recent work by Garg and Rouleau [lo] 
involves a closed contour integration of (2) using Cauchy’s residue theorem 
to isolate the number of zeroes of (2) by counting the multiples of 271. by which the 
phase angle of the determinant changes on the closed contour on the complex 
k-plane. Although a powerful technique for finding a few well separated zeroes, 
the method becomes very inefficient and expensive in computer time when larger 
numbers of more closely-spaced zeroes are encountered. The Method of Eigen- 
z)alfevs (characteristic valleys) overcomes all of these difficulties. 

II. DERIVATION OF THE METHOD OF EGENVALLEYS 

Define the complex auxiliary function E(k) to be 

E(k) = det(d(k)), (3) 

where k is an arbitrary complex number not necessarily an eigenvalue. Since k is 
complex, E will also be complex; and for k to be a solution of (2), both real and 
imaginary parts of E must vanish simultaneously. A much simpler equivalent 
condition is to require the magnitude (complex modulus) of E(k) to vanish so that 

E(k) = 0 -cs 1 E(k)1 = 0. (4) 

This simplification reduces the number of variables from two dependent and two 
independent variables to one dependent and two independent variables. Further, 
/ E(k)1 is a positive semidefinite real number, and, when k is an eigenvalue, [ E(k)1 
reduces to the dispersion relation (2). Again, the number of coordinates is reduced 
from four to three; and while it is impossible to visualize directly four coordinates, 
it is quite easy to picture a function represented by only three. 

Hence, the Method of Eigenvalleys consists of first plotting level curves of the 
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continuous characteristic surface 1 E(k, , k,)l, called an eigensurface, over some 
predefined region of complex k space.’ Use of the maximum modulus principle [I] 
shows that, in this eigensurface, aN concave upward regions will contain eigen- 
values, since the only way a minimum of I E(k)/ can be obtained inside the region 
boundary is if E(k) takes on the value zero. Since all concave regions contain 
eigenvalues at their base, they are called eigenvalleys.2 An eigenvalley contains 
one and only one eigenvalue (unless the eigenvalue is repeated identically-called 
a degenerate solution). 

Figure 1 shows a typical eigensurface, with four eigenvalleys, and the four 
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FIG. 1. Typical eigensurface of I E 1 = 1 E(k, , k,)!. 

corresponding eigenvalues k, , k, , k, , and k, . Three of the eigenvalleys are well 
behaved, but the slope of the fourth is very steep, with a discontinuous directional 
derivative at its base. Such discontinuities in slope are typical and are caused by 
sign changes in the function E(k). One pole of E(k) and no finite hills of 1 E(k)] 
are shown in Fig. 1. This is again due to the maximum modules principle [l] 
which shows that the only way a complex function can have a maximum on the 

1 A important restriction of the complex k space occurs in the degenerate case when k can 
be shown to be pure real or pure imaginary. In this instance, it is unnecessary to plot level 
curves of the function. Rather, a plot of 1 E(k) I versus k = k, + j(0) and a plot of j E(k)1 versus 
k = (0) + jki is all that is required. 

2 This definition of an eigensurface does not imply that all points on the surface are eigenvalues: 
eigenvalues exist only at the base of an eigenvalley. Alternatively, an eigensurface can be thought 
of as an error surface, since all its points represent the absolute error (positive deviation from 
zero) for any arbitrary choice of k. 
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FIG. 2. Typical eigensurface contours. 

interior of a closed region is if it is not analytic there; i.e., E(k) is singular and 
possesses at least a simple pole in the interior. 

Figure 2 shows a contour map of the eigensurface shown in Fig. 1. Such a map 
can be constructed by a digital computer and coupled to an automatic xy plotter 
[2, 31. In order to distinguish the eigenvalleys from poles, the contour lines are 
numbered consecutively starting from the lowest elevation. 

Once the coordinates of all eigenvalleys in the plotting region are visually 
located, the exact location of the base of the eigenvalley can be computed again 
using a digital computer. The actual minimization algorithm that can be used is 
limited by the possible discontinuous directional derivative at the base of the 
eigenvalley and the nonlinear complex transcedental nature of the eigenvalue 
equation. Pattern search [3, 41 is recommended for these reasons, since it is designed 
to work on highly nonlinear objective functions, and it stays on the bottom of 
steep valleys while searching for a minimum.3 

III. SAMPLE SOLUTION 

The Method of Eigenvalleys is now applied to the solution of the dispersion 
relation associated with steady-periodic wave propagation in a compressible 
viscous fluid in a rigid impermeable cylindrical tube [3, Chapter III; 71. 

3 A useful extension of the Method of Eigenvalleys is to run representative eigensurfaces and 
then use these as starting solutions for a gradient technique, such as the one discussed by Tiersten 
[ll] to get neighboring solutions. 
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The relevant set of complex homogeneous linear equations resulting from the 
appropriate solution of the linear acoustic equations is given by 

where 

and 

F2 
M = rk2 + 1 + ,j(4/3) FD 1 

11” 

(6) 

A = [k2 - j(F/D)]l/” (7) 

(where C, and C, are complex constants, k = k, + jk, is the dimensionless 
propagation constant, J,, and J1 are the ordinary zeroth and first-order complex 
Bessel functions of the first kind, F is the given real dimensionless frequency, 
and D is the given real dimensionless first coefficient of viscosity). To obtain (5) 
solutions of the form 

f(B, Z, T) = Re(,f(W) ejFT+kZ) (8) 

are assumed [where W is the dimensionless radius (0 < S! < I), Tthe dimensionless 
time, and Z the dimensionless axial coordinate], the fluid speed is set to zero at 
the tube wall (.g = l), and boundedness is imposed at the tube center (9 = 0). 
Since at least one of C, and C, is arbitrary, the solution of the homogeneous 
system (5) is not unique, and the determinant of the coefficient matrix must be 
zero, yielding the dispersion relation 

M’d JdMk)) kJ,(A(k)) 
kJo(Wk)) A(k) J&(k)) = ” (9) 

Equation (9) is in the form of (2), with all coefficients involving complex trans- 
cendental functions of infinite order in k. Application of the Method of Eigenvalleys 
to (9) now yields all possible solutions for k as a function of parameters F and D. 

The auxiliary function E(k) is obtained by expanding the left-hand side of (9) 
for arbitrary complex k to yield 

J,(M) -- 
E(k) = MA J,(M) 

k2 J,(A) 
J,(A)’ 

(10) 

where E(k) has been normalized by the product J,,(A) J,(M) in order to give 
reasonable eigensurface heights away from the eigenvalleys. 

Figures 3(a,b) and 4(a,b,c) show a typical set of the level curves of 1 E(k)1.4 The 

4 The contour elevations increase logarithmically in height starting at contour number 2 with 
a height of 1.0, with successively higher elevations of 2, 3 ,..., 9, 10, 20 ,..., 90, 100, 200, etc. 
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coordinates of the k solution space for Figs. 3(a) and 4(a) are (-5.0 G< k, < 50.0) 
and (-5.0 < k, < 25.0). The resolution of contour program grid points for these 
two plots is dk,. = flki = 0.46. An average eigensurface contour map involved 
the calculation of over 29 000 complex Bessel functions [3, 51, and took 15 min 
to produce on a Univac 1108 digital computer (add time 0.75 psec), exclusive 
of off-line plot time on a Calcomp 663 incremental plotter [2, 31. Figures 3(b) 
and 4(b) show cases in which magnification was necessary [because the average 
width of eigenvalley B-O (0.2) was smaller than the grid size (0.46) used by the 
contour program, a situation analogous to that of eigenvalue k, , Figs. 1 
and 21. 

A total of thirty-two eigenvalleys were identified in the li solution space; and 
their coordinates were fed to a pattern search minimization heuristic [3] for the 
accurate determination of the eigenvalues. The average run time required to 
compute all of these eigenvalues to five-place accuracy was 7 min. These eigen- 
values are extensively tabulated in the dissertation by Scarton [3]. [Again, because 
of the narrow width of eigenvalley B-O, it was difficult to make the calculation 
converge completely, in this particular case. Eigenvalue ku-,, was later found to -- 
have the exact analytic form kH.-O = & v’(F/2D)( 1 +,j).] 

In Figs. 3 and 4, the eigenvalues are arranged in two bands, called the ordinary A 
and B bands, and two alternate bands of opposite sign, since E(k) is an even 
function of k. Located between the eigenvalues are the poles resulting from the 
zeroes of artificially introduced normalizing functions J,,(A) and J,(M). 

Figure 4(c) indicates an important restriction on the Method of Eigenvalleys: 
that it cannot discriminate between the various sheets of the Riemann surface 
associated with (9). Thus, the variable separable solution (8) is derivable from 

f(,%, Z, T) == Re(,f,(.%‘) ejFT+6Z) 1. Re(,f,(%‘) eiFT-IcZ), (11) 

where the +k term refers to solutions of k on the first sheet of the two-sheeted 
Riemann surface, associated with the double-valued square root of k2, and the -k 
term refers to solutions of k on the second sheet. If the solutions on each of the 
two sheets are allowed to overlap onto one equivalent sheet, then (11) becomes 
the reduced form (8). Hence, Fig. 4(c) shows the joint solutions of both Riemann 
surfaces as the ordinary A and B bands and the alternate A and B bands, which 
for this problem are the negatives of each 0ther.j 

Figure 5 shows a summary of the eigenvalue trajectories for D = 0.01. Extension 
of the plotting domain to include larger values of k, (e.g., 50.0 < k, < 100.0) 
demonstrates that infinitely many eigenvalues exist near the real axis; these well- 

5 For an example of when the symmetry of 1 E(k)i about the origin does not occur, see the 
dissertation by Scarton [3, Chapter IV]. 
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FIG. 5. Eigenvalue trajectories for D = 0.01 [A band frequency range (0.01 G F < 50.0); 
B band frequency range (0.01 < F < lS.O)]. 
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ordered complex conjugate equations have been found by Fitz-Gerald [6, 81 to 
satisfy the relation 

k, = $ (2n -t 1) $ :.I ln[(4/1 + 2)~] 
1 

for large n. Figure 5 also shows that eigenvalues k,-, and k,_., are all approaching 
an analytically verifiable degenerate state at the origin when F = 0. 

As a final note, the Method of Eigenvalleys can also be used to solve the inverse 
temporal stability problem of finding the solutions of (9) for real wavenumber k 
and complex dimensionless frequency F = F,. +,jFi . 

For a much expanded description of the Method of Eigenvalleys, see the disserta- 
tion by Scarton [3, Chapter II]. This expanded version gives many procedural 
details of this method which have been omitted here due to space limitations. 
Complete program descriptions, actual FORTRAN and ALGOL source program 
listings, and typical input data arrangement listings, are also included [3, pp. 58% 
594, 623-655, 664, 668-672, 677-685, 752-7551. These programs require only a 
FORTRAN real-function subroutine FNCTN, to return the value of 1 E(k)! for 
given values of k,. , ki , and system parameters. 
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